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Abstract 

We explore different mathematical formulations, 
develop an object-oriented simulation environment, 
and perform a parametric study in the design of a 
high-yield, low-cost (raw material), and short-cycle- 
time chemical vapor deposition (CVD) reactor for mi- 
croelectronic manufacturing. We begin with several 
possible configurations for the reactor and formulate 
them into their corresponding numerical optimization 
problems. We then develop a software architecture for 
solving the optimization problems by integrating the 
heat conduction and species transport simulation codes 
and a modern optimization software into an object- 
oriented optimization environment. Numerical exper- 
iments are performed, reported, and discussed. 

1 Introduction 

Chemical vapor deposition (CVD) techniques have 
been widely used in the semiconductor industry for in- 
tegrated circuit fabrication. Complex circuits consist- 
ing of thousands to millions of transistors are formed 
on silicon wafers by repeated sequences of CVD, mask- 
ing, and etching steps creating a number of superim- 
posed layers of conducting, insulating, and transistor- 
forming materials. As device feature-scales continue 
to decrease below the sub-micron level, precision con- 
trol of these processing steps becomes extremely im- 
portant to ensure high production yield. Compu- 
tational modeling and simulation have been demon- 
strated to be valuable tools in understanding CVD 
processes and improving reactor and process designs 
D, 2, 31. 
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Of interest in our present study is the deposition 
uniformity of a CVD process, i.e. variation in the 
thicknesses of materials formed on various parts of the 
wafer surface as a result of controlled chemical reac- 
tions. A design goal is therefore to predict the “con- 
trol” parameters for a steady-state deposition phase 
with a prescribed uniformity requirement. Other de- 
sign goals are, for example, low raw material cost and 
short cycle time. For the reactor/process models con- 
sidered in this work, the controls in the CVD reactor 
are the reactor wall temperatures and the flow rate of 
the chemical species injector. We also consider more 
sophisticated models with multiple injectors. Other 
more interesting but even more complex models may 
look at injection rate/temperature time schedule to 
optimize integrated thickness, but they are not re- 
ported here. 

A number of nonlinear minimization problems arise 
from defining different design goals for the deposition 
process. The minimization problems are solved by us- 
ing optimization software called NPSOL developed by 
Gill, Murray, Saunders, and Wright [4]. The simula- 
tion code is a program called OVEND developed by Gr- 
car and Houf [5] which computes deposition rate distri- 
bution on the wafers given the reactor characteristics 
and operating conditions. These two programs are in- 
tegrated into an object-oriented environment through 
an interface in the OPT++ optimization library (an 
object-oriented library developed by Meza [S]). 

In Section 2, we derive several formulations for the 
optimal design problem and study their computational 
needs. In Section 3, we describe a software architec- 
ture for the solution of the optimal design problem. 
In Section 4, we present and discuss numerical results 
of a linear temperature profile problem. 
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2 The CVD Reactor Design Problem 

We consider a small-batch, fast ramp (SBFR) fur- 
nace [7], which is designed to heat up and cool down 
quickly, thus reducing cycle time and thermal budget. 
A typical SBFR consists of 50 eight-inch (diameter) 
equally-spaced silicon wafers enclosed in a vacuum- 
bearing quartz jar (Figure 1). The high operating 
temperatures (about 900 - 1000 K) are generated by 
resistive coil heaters contained in an insulated canis- 
ter along the length of the reactor. The heaters can 
be individually controlled to give piecewise linear tem- 
perature profiles. In this paper, however, we only con- 
sider ganging the heaters together to manifest a linear 
(with respect to distance from the bottom of the wafer 
stack) temperature profile on the reactor wall which 
can be represented by temperatures at two selected 
positions along the reactor wall. One or more injec- 
tors can be placed in the reactor to introduce chemical 
species. The injectors are characterized by their posi- 
tions, temperatures, flow rates, and chemical species 
compositions. This reactor is simulated by an anal- 
ysis code, OVEND, which consists of a heat conduc- 
tion model to describe the temperature distribution 
in the reactor, a species transport model to compute 
the composition of species inside the reactor [8, 91, 
and finally a surface kinetics model [lo] to describe 
the growth rate of the deposition. 

High production yield, low raw material cost, and 
short cycle time are important characteristics in CVD 
process design. If we cast these requirements into 
an optimal design problem, the objectives are : to 
maximize the mean deposition rate (to reduce cycle 
time), to minimize the injector flow rate (to reduce raw 
material costs), and to minimize the deposition non- 
uniformity (to improve yield). Since these conflicting 
requirements may make the simultaneous optimiza- 
tion of these three quantities unattainable, we instead 
examine several simplifications which are presented in 
the next few subsections. The following notations are 
used throughout this report : 

an array of n wall te mperatures 
injector flow rate (for l-injector case) 

oi - flow rate of the i-th injector 
& - deposition rates at selected locations 
;r - mean deposition rate. 

2.1 Minimizing Non-uniformity Using 
Single Injector and a Fixed 6 

Suppose we have prescribed a uniform target depo- 
sition rate &* , and we are given one injector at a fixed 
location (say, 9.75 centimeters from the base of the 
reactor). The design objective is to find the wall tem- 
perature profile and the injector flow rate such that the 
actual deposition rates at all grid points are as close 
to ir* as possible (based on, for example, the La-norm 
metric). Suppose in addition that the wall tempera- 
tures and the flow rate of the injector are constrained 
to fall within a certain range of values (for example, 
948 - 1023 K for temperatures and 25 - 125 standard 
cubic centimeters per minute for the flow rate). The 
objective function is defined by a least-squares fit of 
the m discrete deposition rates to the target rate sub- 
ject to some temperature and flow rate constraints, 

subject to 

TL I Ti 5 EJ, i = 1,2;..,12; 

QLL&<Q~J; 

where Tr, and Tu (QL and Qv) are the lower and up- 
per bounds for the wall temperatures (flow rate), re- 
spectively. This bound-constrained, nonlinear, least- 
squares problem can be solved, for example, by a 
bound-constrained Gauss-Newton method. 

2.2 Maximizing Mean Deposition Rate 
Using One injector 

The best target deposition rate to select is not pc- 
tually known a priori. A desired capability to be used 
with OVEN D is to predict the maximum allowable (av- 
erage) deposition rate 5 while using minimum amount 
of chemical species (i.e. minimum flow rate) and such 
that the deposition rate variation across the wafers is 
kept at a minimum. A more practical formulation is 
to relax the minimum flow rate and deposition unifor- 
mity requirements. In particular, it is satisfactory to 
allow the deposition rate non-uniformity to fall within 
a user-specified relative tolerance. Let 7 > 0 be a user- 
defined absolute tolerance. Then the problem can be 
formulated as 

F(T, 4j) = $;-; I& (2) 
i-l 
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subject to 

TL ITi<%, i= 1,2,...,n; 

Q~Scj<Qrr. 

Equation (2) seeks to maximize the average deposi- 
tion rate subject to the constraint that the difference 
between each individual sample point and the mean 
falls within some fraction T of the mean. Again, the 
operating wall temperatures and flow rate are con- 
strained to be within a given range; therefore bound 
constraints are prescribed for them. Equation (2) is 
inherently more difficult to solve than Equation (1) 
because we do not know what the mean value is a 
priori. Mathematically, this formulation gives rise to 
a nonlinearly-constrained optimization problem. The 
nonlinear constraints arise because &,-norm is used 
in the bounds for the deposition non-uniformity. 

An alternative, which can reduce the number of 
nonlinear constraints by an order of magnitude in our 
case, is to use La-norm (that is, in the mean-squared- 
error sense) in Equation (2). The result is Equation 
(3) which has only one nonlinear constraint. A disad- 
vantage for this simplification is that a few data points 
with large variations from the target may be accepted. 

W’, 0, 
1 m =min-- &j c TA m i=l 

subject to 

TL I Ti I TV, i=1,2,...,n; 

(3) 

QL 5 0 I Qu. 

Numerical results for Equation (2) and (3) will be 
given in later sections. 

2.3 Maximizing Mean Deposition Rate 
Using Two Injectors 

Suppose an additional injector is to be placed in the 
reactor. In addition, the location and flow rate of the 
second injector are also design parameters. The de- 
sign objective is to predict the wall temperatures, the 
flow rates, and the position of the second injector such 

that the mean deposition rate is maximized while de- 
position non-uniformity is bounded by a given relative 
tolerance r. If we also take into account that the cur- 
rent OVEND code allows the injectors to be put only 
at certain discrete locations (namely, midway between 
two adjacent wafers or at some pre-defined locations 
outside the range of the wafer stack), we have encoun- 
tered a mixed integer programming problem which is 
much harder to solve than the nonlinearly constrained 
optimization problem. Moreover, the potential exis- 
tence of many local minima in the solution space in 
this problem (as well as the previous one) means that 
different initial guesses may give different solutions. 

Let D be the distance, between the base of the reac- 
tor and Injector 2, and &I and Qz be the flow rates of 
Injector 1 and 2, respectively. The optimization prob- 
lem using L,- norm in the non-uniformity constraints 
can be expressed as 

F(T, Q, 0) = min { min 
DESD T,&,& m i=l 

subject to 

TL LTi LTu, i= 1,2,...,n; 

Q~L 5 oi 5 Qiu, i = 19% 

where SD is a set of discrete values for D. For the 
test problem used in this work, the size of the set SD 
is about 70. We will explore the space of So in our 
numerical experiments. 

3 Software Architecture for Optimiza- 
tion with OVEND 

A software design objective is to maintain a loosely- 
coupled computing environment for simulation (func- 
tion evaluation) and optimization while allowing dif- 
ferent configurations to be tested (by changing the 
input files and without recompiling the program). 
This is accomplished by a custom built interface be- 
tween the optimization and the analysis code simi- 
lar to the one described in [l]. The advantage of 
such an interface is that once it is in place, new opti- 
mization methods can be plugged in and tested with 
much ease. The optimization software chosen for our 
work is OPT++ which is an object-oriented library 
comprising many optimization algorithms. Since a 
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nonlinearly-constrained problem solver is currently 
not available in OPT++, we develop a link between 
OPT++ and a publicly available optimization pack- 
age called NPSOL. In the following sub-sections, we 
describe each of the major components in the soft- 
ware structure as well as the interfaces between them. 
The software design is also depicted in Figure 2. 

In Figure 2, the opt-ovend module sets up the op- 
timization problem-reading in the problem dimen- 
sion, initial guess, lower and upper bounds of the de- 
sign parameters, etc.; instantiating an optimization 
algorithm from OPT++ (or linking NPSOL through 
OPT++); and providing the selected optimization al- 
gorithm with a function evaluator (and a constraint 
evaluator). When the function evaluator is called, it 
sets up the proper input files through the ifilter subrou- 
tine and then issues a UNIX system call to the analy- 
sis program OVEND. Upon termination, OVEND gen- 
erates an output file containing the deposition rates 
which are read and processed by the ofilter subroutine 
and returned to opt-ovend to compute the function 
value. By using the ifilter and ofilter modules, OVEND 
is treated as a “black-box” by opt-ovend. This soft- 
ware structure allows modifications made to OVEND 
without having to modify or even re-compile the opti- 
mization portion of the code. 

3.1 The OPT++ Optimization Library 

The OPT++ software consists of a library of object- 
oriented optimization algorithms written in C++. 
Object-oriented programming emphasizes the creation 
and use of new data types formed from simple data 
types such as integer, double precision floating point 
number, character strings, etc. The more complex 
data type is specified as a class, which hides many 
implementation details and is visible only through a 
collection of data fields and class functions. For ex- 
ample, in defining a class for a certain optimization 
algorithm, the essential functions visible to the users 
are SetX (to define the initial values of the design vari- 
ables), SetFcnAccrcy (to define the function precision), 
and optimize (to execute the optimization algorithm). 
With the definition of such an optimization class, the 
actual details of how optimization is performed are 
transparent to the users, and this is reasonable since 
users may only be concerned about the final results 
and not the methods to obtain them. 

Another essential feature of object-oriented pro- 
gramming is the concept of inheritance. This is a 
powerful concept which helps to reduce the amount 
of coding. For example, nonlinear problems can be 

classified based on whether analytic derivatives are 
available or not. In OPT++, the class NLPO defines 
a nonlinear problem which does not provide any ana- 
lytic or finite-difference derivatives. If the first deriva- 
tive is available, the nonlinear problem is classified as 
NLPl. The NLPl class contains derivatives in addi- 
tion to what is available in NLPO. Therefore, we can 
use the inheritance mechanism (namely, NLPl inherits 
from NLPO) to define NLPl such that all the data and 
functions available in NLPO can be re-used. Similarly, 
NLP2 inherits from NLPl and provides, in addition, 
second derivative information. 

OPT++ provides a rich set of optimization 
methods-direct search method, nonlinear conju- 
gate gradient method, Newton-like methods (Newton, 
Quasi-Newton, etc.), each in the form of a class. In 
addition, OPT++ version 1.5 also provides capabili- 
ties to handle problems with simple bound constraints 
on the design parameters. New methods continue to 
be added to the collection to handle more complicated 
problems. 

3.2 The NPSOL Optimization Package 

Equation (1) can readily be solved by a Gauss- 
Newton algorithm residing in OPT++. However, 
OPT++ is currently unable to solve nonlinearly con- 
strained optimization problems represented by Equa- 
tion (2) and (3). Therefore, we have developed an in- 
terface between OPT++ and a publicly available op- 
timization package called NPSOL, which is a set of 
Fortran subroutines designed to minimize a smooth 
function subject to bounded, linear, and smooth non- 
linear constraints. NPSOL [4] uses an iterative algo- 
rithm which solves a sequential quadratic program- 
ming subprogram at each iteration to find a search 
direction. In order to use the package, subroutines 
that define the objective and constraint functions and 
(optionally) their gradients must be provided. 

3.3 Building an OPT++/NPSOL Interface 

Since the current version of OPT++ (namely, ver- 
sion 1.5) cannot handle nonlinearly constrained prob- 
lems, we have built an interface between OPT++ and 
NPSOL. The interface has been carefully designed to 
be re-used in OPT++ when nonlinearly constrained 
capabilities are added in the future. In the following 
we describe several software components for such an 
interface and the rationale for their inclusion. 

1. As is with many software packages, the NPSOL 
optimizer demands a large number of parameters 
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2. 

3 

4 

to be passed to it (through calls to the parameter 
set-up subroutine and the optimizer) , and some 
of these parameters do not contain any useful in- 
formation to the users (e.g. work arrays). It is 
therefore desirable to hide this data management 
from the users. As a result, two files called inter- 
face.c and npoptn.f are added to NPSOL to sim- 
plify the protocol between OPT++ and NPSOL. 
In addition, these files also serve as cross,language 
interface (between C/C++ and Fortran). 

A new class (in the context of object-oriented pro- 
gramming) called OptNPSOL is defined which re- 
ceives and stores parameters (data and function 
pointers) passed by the users and passes them on 
to the NPSOL optimizer. Furthermore, it pro- 
vides an Optimize member function (as is with 
other optimizers in OPT++) that can be called 
to activate the optimizer. 

A typical constraint evaluator returns all con- 
straint values at each call, given a set of input 
values. It is not uncommon for the NPSOL op- 
timizer, especially in the computation of finite- 
difference derivatives, to request a constraint eval- 
uation using the same input values as with a pre- 
vious request. In order to detect such occur- 
rences and to avoid redundant computations, a 
data management module .is designed to bridge 
this disparity. The added module stores the func- 
tion values, constraint values, and (if provided) 
the gradient and Jacobian information returned 
by the function and constraint evaluators. Sub- 
sequent calls with the same parameter values will 
bypass the evaluators and instead fetch the re- 
quested information from the data bank, thus 
avoiding redundant evaluations. 

Numerical Experiments 

Several formulations of the CVD reactor design op- 
timizations, as described earlier, are tested to demon- 
strate the capabilities of the OVEND/OPT++/NPSOL 
design tool. The reactor model has been given in Fig- 
ure 1, which has an operating pressure of 0.6 torr, and 
where the reactor radius is 11.7 centimeters, the reac- 
tor length is 112 centimeters, the number of wafers in 
the stack is 50, and the wafer radius is 10 centimeters. 
The wafer spacing is set at 1.3 centimeters, with the 
first and last wafers located at 15.8 and 79.0 centime- 
ters, respectively, from the base of the reactor. Both 

the heat conduction and the species transport models 
are discretized and solved with a hybrid Newton-time 
integration procedure embodied in the TWOPNT code 
developed at Sandia [ll]. 

The first part of our experiment uses only one injec- 
tor which is placed at a fixed location (9.75 centime- 
ters from the base of the reactor). The second part 
uses two injectors with the first one at a fixed location 
and the position of the second injector as a design pa- 
rameter. The temperature of the injectors are fixed 
at 300 K, and the chemical species injected consists of 
Si(OC2H5)4 with a mole fraction of 1.0. We assume 
that on the reactor wall the temperature follows a lin- 
ear profile between the first and the last wafer (i.e. 
between 15.8 and 79.0 centimeters from the base) and 
a constant profile above and below the wafer stack. 
The full temperature profile can therefore be specified 
by two temperatures at the locations 15.8 and 79.0 
(which are Tl and Tz in the numerical examples given 
below). 

4.1 Single Injector Test Case 

In the first numerical example, the deposition rate 
is optimized according to the formulation given in 
Equation (2) h w ere the constraints have been mod- 
ified to be compatible with NPSOL, i.e. 

subject to 

with the parameters given by 

n = 2 (number of wall temperatures) 
= 400 (number of deposition rates) 

pL = 948 K 
Tu = 1023 K 
&L = 25 seem 
Qu = 125 s&m 
h = 10-5 ( re a lve finite difference interval). 1 t‘ 

Different non-uniformity tolerances, T, and initial 
guesses are tested. Furthermore, both the L,-norm 
and La-norm for the deposition non-uniformity con- 
straints are tested. 
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4.1.1 Numerical Results 

Numerical results show that the initial guess for the 
temperature profile has little effect on the converged 
mean deposition rate. Different initial flow rates Q, on 
the other hand, may lead to different answers (or non- 
convergence). We therefore perform the tests with 
fixed initial temperatures at Tr = T2 = 950 K and 
vary the initial Q and r. The results are given in Ta- 
ble 1 and 2 for L,- and La-norm, respectively (data 
in Table 2 are obtained for an initial & of 30.0 seem). 
The achievable mean deposition rates with respect to 
r are also plotted in Figure 3. 

4.1.2 Observations and Discussion 

A few observations were gathered during numerical 
simulation and from the numerical results : 

1. 

2. 

3. 

4.2 

For the L,-norm case, we found that with the 
given bounds for the wall temperatures and flow 
rate, the smallest T for a successful run (such that 
a feasible solution is found) is about 0.024, mean- 
ing that one cannot achieve better than about 2.4 
% variation on the deposition rates using 1 injec- 
tor and a linear temperature profile. The reason 
is that for r < 0.024, Tl and Q must drop be- 
low their corresponding lower bounds in order to 
achieve our design objective. 

OVEND was initially set up to run at a conver- 
gence tolerance of lo-‘. We found that this is 
too noisy to generate, in Get-F, finite-difference 
derivatives with respect to the flow rate using 
a relative finite difference step size of 10V5 or 
smaller. To improve robustness, we decrease the 
convergence tolerance to 10-ll. Little effect in 
the computer run-time was observed as a result 
of this change. 

From Figure 3 and 4, the mean deposition rates 
and r appear to exhibit a linear relationship in 
the log-log scale. The slope of the line is approx- 
imately equal to 2 in both cases. Hence, we can 
approximate the achievable mean deposition rate 
by ; PZ cr2 where c is about 8.6 x lo4 and 4 x lo5 
for the L,-norm and Lz-norm cases, respectively. 

Two-Injector Test Case 

This numerical example uses two injectors with In- 
jector 1 placed at a fixed position of 9.75 cm from 
the base of the reactor and Injector 2 placed (man- 
ually) at various allowable (by the OVEND analysis 

program) locations. We solve Equation (4) with its 
nonlinear constraints modified to be compatible with 
NPSOL, i.e., 

min { min -I-&q 
DESD T,&,& m i=l 

(6) 

subject to 

-00 < hi - *~~=lbj 5 0, i= 1,2;..,m; 

O<&j-- ~~~=l&j < 00, i= 1,2,...,m; 
TL 5 Ti 5 TV, i = 1,2,...,n; 

Q~L I & I QXJ i = I,% 

with parameters given by 

n =2 
= 400 

yL = 948 K 
Tu = 1023 K 
&IL = 25 seem 
&IV = 125 seem 
Q~L = 0 seem 
Q2u = 125 seem 
7- = 0.03 (0.015 for Lz-norm). 

The initial wall temperatures are 950 K and the initial 
flow rates are 30 and 0 seem, respectively. Instead of 
using mixed integer programming solvers, we perform 
the outer minimization in Equation (6) by running a 
suite of test cases with different Injector 2 positions 
and hand-picking the optimal solution. 

4.2.1 Numerical Results 

Tables 3 and 4 show the achievable mean deposition 
rates for different locations of injector 2, using L, and 
L2 norms, respectively, for the nonlinear constraints. 
The plots of achievable mean deposition rates with 
respect to D are also given in Figure 4. 

4.2.2 Observations and Discussion 

It can be observed that adding a second injector to the 
system in general increases the achievable mean depo- 
sition rates (see Table 3 and 4). The largest improve- 
ment is obtained when the second injector is located 
at about 22 to 24 cm above the reactor base. However, 
the presence of the second injector gives no improve- 
ment if it is placed at 25 to 64 cm from the reactor 
base. The best achievable deposition rates are 132 
and 112 for using L, and Lz norms, respectively (re- 
call that these two values are obtained from using two 
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different r’s). The last column of Table 4 indicates 
the position of the wafer where maximum deviation 
from the mean is found. The first number is the wafer 
number and the second is the radial point number. 
For example, for D = 16.5, the maximum deviation is 
at the second wafer (from the bottom) and the eighth 
radial point, i.e. the point closest to Injector 2. 

Achieving higher mean deposition rates often comes 
with higher flow rate requirement for the injectors. In 
Table 3 and 4 we also include a column showing the 
total flow rate requirements, which may be used by 
designers to decide whether design parameters other 
than the optimal should be considered. 

5 Summary 

In this report, we have shown how to formulate an 
optimal optimization problem for the design of CVD 
reactors with the objective to achieve maximum de- 
position without sacrificing production yield. Several 
formulations using the non-uniformity constraints are 
presented and their computational needs are exam- 
ined. Moreover, we have described a detailed design 
and implementation of the program to solve the opti- 
mization problems. Numerical results are also given 
to show its effectiveness. 
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Table 1: Numerical Results for Single Injector Cat .- 
Initial data 11 Optimized design F 

initial Q(sccm) 

30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 

La 

-TqTpj- 
0.024 11 948.1 

Tz 
981.4 
986.8 
992.4 
997.7 

1002.3 
1007.1 
1012.3 
1016.3 

barameters 
Q (seem) 

3e (&-norm case 
Output Data 

T- 
L 

z-p&g- 
47.78 
56.20 
66.11 
77.09 
88.82 

100.30 
112.22 
124.98 

# feval 
36 
66 
68 
100 
100 
120 
164 
193 
176 

0.026 954.0 
0.028 959.9 
0.030 965.5 
0.032 970.7 
0.034 975.4 
0.036 980.0 
0.038 984.3 
0.040 11 988.4 ) 1021.0 1 90.6 11 138.19 

1 1 column : numoer of function evaluations needed. 

27.8 
33.5 
40.3 
48.3 
57.7 
65.9 
72.9 
82.7 

Table 2: Numerical Results for Single Injector Case (&-norm case) 

Input Optimized design parameters Output Data 
7 TI (K) TZ (K) Q  (seem) ii (A/min) # feval 

0.012 954.5 982.7 38.8 57.44 160 
0.014 965.4 993.3 53.9 76.91 506 
0.016 974.6 1002.3 70.8 97.76 144 
0.018 982.4 1009.4 90.7 119.55 122 
0.020 989.1 1 1014.0 1 121.2 142.71 1 136 

Last column : number of function evaluations needed. 

Table 3: Numerical Results for Two-Injector Case A 

D (4 

16.455 
19.033 
22.902 
24.191 
30.638 
31.927 
62.873 
64.162 
66.741 
69.320 
71.898 
77.056 
81.851 
La&co: 

I 

: 
lun 

T, F) ~2 W ) 
970.53 1001.37 
980.47 1009.53 
986.50 1013.98 
982.98 1010.26 
966.59 999.25 
965.80 998.19 
965.53 997.71 
965.88 998.41 
968.05 1001.86 
969.76 1004.82 
971.57 1007.75 
968.69 1002.84 
967.31 1000.52 

I^ in : loci . . . atlon (water and gnd pc 

&I (mm) Q2 (seem) 
33.92 
61.82 
78.57 
70.31 
46.61 
47.60 
48.30 
47.98 
48.47 
48.44 
49.03 
48.82 
48.73 

24.45 
18.45 
19.92 
18.02 
1.27 
0.38 
0.00 
0.15 
0.38 
0.81 
1.20 
0.89 
0.89 

t number) 

Total Q  
58.37 
80.27 
98.49 
88.33 
47.88 
47.98 
48.30 
48.13 
48.85 
49.25 
50.23 
49.71 
49.62 

(; 
88.37 
113.58 
131.62 
119.89 
78.42 
77.36 
77.09 
77.61 
81.52 
84.65 
88.22 
82.79 
80.29 

maximum deviation. 
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Table 4: Numerical Results for Two-Injector Case B 

D (4 
16.455 
19.033 
24.191 
25.480 
30.638 
31.927 
33.217 
34.506 
35.796 
37.085 
66.741 
69.320 
71.898 
77.056 
81.851 

2’1 (K) 
970.71 
976.19 
979.14 
978.87 
974.68 
971.52 
971.93 
970.88 
970.29 
970.19 
970.19 
970.42 
970.80 
970.32 
970.19 

7-5 (W 
998.92 
1002.29 
999.95 
999.03 
995.16 
988.67 
995.02 
995.80 
997.09 
997.99 
997.99 
998.92 
1000.16 
998.49 
998.00 

91 (km) 92 (seem) 
25.00 37.35 
43.79 35.10 
81.39 29.30 
86.17 27.57 
82.60 14.87 
95.97 18.34 
71.03 7.05 
66.13 3.78 
63.01 1.21 
62.07 0.00 
62.06 0.00 
60.23 O-27 
58.53 0.57 
61.17 0.20 
62.06 0.00 

Gas 

‘nil%:o 

\ 

. . . . 
: 
: . . . . . . . . . . . 
: 
: 

~ 

. . . . 
: . . . . 
: . . . . . . . . 

Total Q - 
62.35 
78.89 
110.69 
113.74 
97.47 
114.31 
78.08 
69.91 
64.22 
62.07 
62.06 
60.50 
59.10 
61.37 
62.06 

iqqzj- 
88.53 
102.48 
112.44 
111.87 
99.97 
94.58 
92.02 
89.07 
87.47 
87.21 
87.21 
87.28 
87.69 
87.29 
87.21 

Figure 1: Schematic diagram of a CVD reactor 
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1 opt-ovend 1 

ifilter __t Ovend __c ofilter 
k J 

Figure 2: Block Diagram for OVEND/OPT++/NPSOL 

1 "' j-2 3-&-J 

i 

, I I 

-3.80 -3.60 -3.40 -4.40 -4.20 -4.00 -3.80 
Constraint Tolerance (log scale) Constraint Tolerance (log scale) 

Figure 3: Mean deposition rates as a function of T : using (left) &,-norm, and (right) &-norm in 
the nonlinear constraints 

2s 
E a 140.0 

5 
Q 120.0 
K 
& 0 100.0 
5 

s al 80.0 
z 
B m 3 60.0 I 80.0 L 2 0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0 40.0 60.0 80.0 1 

Position of Injecdor 2 (cm) Position of Injector 2 (cm) 

Figure 4: Mean deposition rates as a function of Injector 2 position : using (left) .&,-norm, and 
(right) &!-norm in the nonlinear constraints 
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